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Abstract

The differential equations governing out-of-plane free vibrations of the elastic, horizontally curved beams with variable

curvature are derived and solved numerically to obtain natural frequencies and mode shapes for parabolic, sinusoidal and

elliptic beams with hinged–hinged, hinged–clamped, and clamped–clamped end constraints, in which the effects of the

rotatory and torsional inertias and shear deformation are included. Experimental measures of frequencies for several

laboratory-scale parabolic models serve to validate the theoretical results.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Since horizontally curved beams are basic structural components, studies on the free vibrations of linearly
elastic curved beams of various shapes have been reported for more than three decades. Accurate predictions
of the natural frequencies for the free vibrations are important in the design of structures, especially when
dynamic loads are subjected. The dynamic behavior of structures including curved beams may be affected by
various parameters such as the beam shape, end constraint, inertia force, shear deformation, variable
curvature, cross-sectional shape, etc.

Following references and their citations included the governing equations and the significances of the free,
out-of-plane vibrations of curved beams. Briefly, these works included studies of beams with prediction of the
exact natural frequency by Gupter and Howson [1], Howson et al. [2], and Howson and Jemah [3]; and studies
showing the effects of transverse shear, rotatory inertia on natural frequencies by Wang and Guilbert [4], Issa
et al. [5], and Kang et al. [6]. Also, natural frequencies of beams with the variable curvature had been
computed by Wang [7], Takahashi and Suzuki [8] and Scott and Woodhouse [9]; beams with variable cross-
section by Gendy and Saleeb [10], Kawakami et al. [11] and Lee et al. [12]; beams with the continuous span by
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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Wang et al. [13], Snyder and Wilson [14] and Piovan et al. [15]; and beams with the elastic foundation by Wang
and Brannen [16], Issa et al. [17], and Lee et al. [18], respectively.

This paper has four main objectives: (1) to present the differential equations for the out-of-plane free
vibration of linearly elastic curved beam; (2) to include effect of variable curvature; (3) to include effects of
rotatory and torsional inertias and shear deformation; and (4) to present solutions for the various beam
shapes, end constraints and beam parameters.

In this study, differential equations governing the out-of-plane free vibrations of linearly elastic curved
beam are derived. The effects of variable curvature, both rotatory and torsional inertias, and shear
deformation on natural frequencies are included although warping of the cross-section is excluded. Most of all
works in the open literature include the effects of variable curvature, rotatory inertia, torsional inertia and
shear deformation separately while this study includes all these effects. In order to present the mode shapes of
the stress resultants as well as those of the deformations, non-dimensional equations of the stress resultants are
formulated. The differential equations are numerically solved to calculate some higher natural frequencies
accompanied with the corresponding mode shapes.

The convergence analysis is conducted to obtain the accurate results of numerical solutions. In numerical
examples, the parabolic, sinusoidal and elliptic beams with the hinged–hinged, hinged–clamped, and
clamped–clamped end constraints are considered. Effects of the rotatory and torsional inertias and shear
deformation on natural frequencies are presented. The frequency curves that present the relationships between
the natural frequencies and various beam parameters are presented. Typical mode shapes of the stress
resultants as well as those of deformations are presented. Experimental methods are described for measuring
the free vibration frequencies for the laboratory-scale parabolic beams, which agree well with those predicted
by theory.
2. Mathematical model

The geometry of a uniform, symmetric curved beam with variable curvature placed on the horizontal plane
(x, y) is defined in Fig. 1. Both ends are either hinged or clamped. Its dashed line is the undeformed shape of
the centerline of the cross-section in the static state. The span length, horizontal rise, subtended angle, and
shape of the middle surface are l, h, a, and y ¼ y(x), respectively. Its radius of curvature r, a function of the
coordinate x, has an inclination y with the radial direction of left end (x ¼ 0). The solid line is one of the
typical deformed shapes of the so-called mode shapes in the state of free vibration. The positive deformations
in the state of free vibration of the vertical deflection, rotation due to the pure bending, shear distortion and
twist angle are denoted as n, c, b, and f, respectively, at any coordinates (x, y).

A small element of curved beam in the free vibration state shown in Fig. 2 defines positive directions of the
three stress resultants and three inertia loadings. Stress resultants are the shear force Q, bending moment M

and torsional moment T, and inertia loadings are the transverse inertia force Fv, rotatory inertia couple Cc

and torsional inertia moment Cf. With the inertia force, inertia couple and torsional inertia moment treated as
equivalent static quantities, the three equations for ‘dynamic equilibrium’ of the element are

Q0 � rF v ¼ 0; M 0 � rQþ T þ rCc ¼ 0; M � T 0 þ rCf ¼ 0, (1)2(3)

where (0) ¼ d/dy.
The beam material is assumed to be linear elastic and then, the stress resultants Q, M, and T that relate to

the deformations n, c, b, and f are given as [19,20]

Q ¼ kGAb ¼ kGAðr�1n0 � cÞ; M ¼ r�1EIðf� c0Þ; T ¼ r�1GJðcþ f0Þ, (4)2(6)

where k is the shape factor of cross-section, G the shear modulus of elasticity and E Young’s modulus, A the
area, I the second moment of inertia of area, and J the torsion constant of cross-section, respectively. Note
that the b variable in Eq. (4) is the shear distortion so that the effect of shear deformation is included in
deriving the governing equations.

When the beam is in a state of free vibration, the beam element having mass is subjected to inertia loadings.
The beam is assumed to be in harmonic motion, or each coordinate is proportional to sin (ot), where o is the
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Fig. 1. Curved beam with variable curvature placed on horizontal plane and related variables.
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Fig. 2. Loads acting on curved beam element.
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angular frequency and t is time. The three inertia loadings are then

Fv ¼ �gAo2v; Cc ¼ �gIo2c; Cf ¼ �gIpo2f, (7)2(9)

where g is the mass density of beam material and Ip the polar moment of inertia of area of cross-section. Note
that the flexural vibration is caused by the transverse inertia force Fv and the torsional vibration is caused
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by the torsional inertia moment Cf. Meanwhile, the rotatory inertia couple Cc affects the behavior of the
flexural vibration.

When Eqs. (4)–(6) are differentiated once, the results are

Q0 ¼ kGA½r�1ðv00 � r0r�1v0Þ � c0�; M 0 ¼ EIr�1½ðf0 � c00Þ � r0r�1ðf� c0Þ�, (10),(11)

T 0 ¼ GJr�1½ðc0 þ f00Þ � r0r�1ðcþ f0Þ�. (12)

To facilitate the numerical studies and to present the solutions in most general form for this class of
problem, the following non-dimensional parameters are defined. The first is the frequency parameter

Ci ¼ oil
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gA=ðEIÞ

p
, (13)

which is written in terms of o ¼ oi, i ¼ 1,2,3,y. The horizontal rise to span length ratio f and two slenderness
ratios s and sp are, respectively,

f ¼ h=l; s ¼ l=
ffiffiffiffiffiffiffiffiffi
I=A

p
; sp ¼ l=

ffiffiffiffiffiffiffiffiffiffiffi
Ip=A

q
. (14)2(16)

Note that in two last equations, the former s is the slenderness ratio respect to I and the latter sp is one
respect to Ip. The torsional rigidity to flexural rigidity ratio and the shear parameter u are, respectively,

e ¼ GJ=ðEIÞ; u ¼ kG=E. (17),(18)

Finally, the coordinates, radius of curvature and vertical deflection are normalized by the span length l:

x ¼ x=l; d ¼ y=l; z ¼ r=l; Z ¼ v=l. (19)2(22)

Differential equations governing out-of-plane free vibrations of the curved beam with variable curvature are
derived by using all equations mentioned above. Stress resultants in Eqs. (4)–(6), derivatives of stress
resultants in Eqs. (10)–(12) and inertia loadings in Eqs. (7)–(9) are substituted into the three equations of
dynamic equilibrium in Eqs. (1)–(3) and the non-dimensional parameters in Eqs. (13)–(22) are used. The
results are then

Z00 ¼ z0z�1Z0 � u�1s�2C2
i z

2Zþ zc0, (23)

c00 ¼ �us2zZþ z0z�1c0 þ ðeþ us2z2 � s�2C2
i z

2
Þcþ ð1þ eÞf0 � z0z�1f, (24)

f00 ¼ �ð1þ e�1Þc0 þ z0z�1cþ z0z�1f0 þ e�1ð1� s�2p C2
i z

2
Þf. (25)

Each end of the beam is either hinged or clamped. The boundary conditions for the hinged end (y ¼ 0 and
a) are

Z ¼ 0; c0 ¼ 0; f ¼ 0, (26)2(28)

where Eq. (27) with Eq. (28) assures that the bending moment M in Eq. (5) is zero.
The boundary conditions for the clamped end (y ¼ 0 and a) are

Z ¼ 0; c ¼ 0; f ¼ 0 (29)2(31)

implying that the deformations v, c and f are zero.
For presenting the mode shapes of the stress resultants Q, M, and T as well as those of deformations v, c,

and f, the following non-dimensional stress resultants are introduced:

Q� ¼ Q=ðkGAÞ ¼ z�1Z0 � c; M� ¼Ml=ðEIÞ ¼ z�1ðf� c0Þ, (32),(33)

T� ¼ Tl=ðGJÞ ¼ z�1ðcþ f0Þ. (34)
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3. Numerical methods

3.1. Computing method of curvature terms

Coefficients in Eqs. (23)–(25) include two terms of curvature z and z0 at the coordinate y which are
determined when the shape of curved beam is given as the non-dimensional equation of d ¼ d(x). In this
section, the determining method of d ¼ d(x) for a given beam shape with the span length l and horizontal rise
h, and the computing method of the curvature terms z and z0 of the given beam shape are discussed.

Shown in Fig. 3(a) is a general shape of the beam with l and h placed on the horizontal plane (x, y), from
which the equation of beam can be determined as y ¼ y(x). Cast the given beam shape y ¼ y(x) in non-
dimensional form using Eqs. (14), (19), and (20). This leads to d ¼ d(x) from which the inclination y, non-
dimensional radius z at the coordinate x, i.e. at the coordinate x, and subtended angle a, respectively, are
determined.

In this study, three kinds of beam shapes of the parabolic, sinusoidal and elliptic beams are selected. The
non-dimensional equation d ¼ d(x) of each beam shape is determined as follows [21].
3.1.1. Parabolic beam

The non-dimensional equation d ¼ d(x) for the parabolic beam, depicted in Fig. 3(a), of span length l and
horizontal rise h is analytically obtained by using Eqs. (14), (19), and (20), and subsequently, its first derivative
di
¼ di(x) is analytically obtained. The results are

d ¼ dðxÞ ¼ �4f xðx� 1Þ; di
¼ di
ðxÞ ¼ �4f ð2x� 1Þ, (35),(36)

where (i) ¼ d/dx.
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Fig. 3. Beam shapes: (a) general/parabolic, (b) sinusoidal, and (c) elliptic beams.
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3.1.2. Sinusoidal beam

Consider now a sinusoidal beam that is a segment of sinusoid, or the solid curve of Fig. 3(b). This beam has
span length l and horizontal rise h, and a coordinate system (x, y) originating from the left end. The
corresponding half-sine curve, also shown in Fig. 3(b), is composed of this beam segment and the broken line
segments extending from each end. This half-sine curve of length (1+2c)l and amplitude H is expressed in
terms of the (X, Y) as Y ¼ H sin[pX/{(1+2c)l}]. The relationship between the two coordinate systems of
Fig. 3(b) is X ¼ cl+x and Y ¼ H�h+y. When three equations just mentioned are combined together with
Eqs. (14), (19), and (20), the general equation for the sinusoidal beam in non-dimensional form can be
expressed and also its first derivative is obtained. The results are

d ¼ dðxÞ ¼ a1 sinða2xþ a2cÞ þ f � a1; di
¼ di
ðxÞ ¼ a1a2 cosða2xþ a2cÞ, (37),(38)

where a1 ¼ f/[1�sin(a2c)] and a2 ¼ p/(1+2c).

3.1.3. Elliptic beam

The elliptic beam of span length l and horizontal rise h is also defined in non-dimensional form. However,
(1+2c)l is the length of the axis of the ellipse as shown in Fig. 3(c). The non-dimensional equation for this
beam and its first derivative are

d ¼ dðxÞ ¼ ða1=a2Þ½a
2
2 � ðx� 1=2Þ2�1=2 þ f � a1, (39)

di
¼ di
ðxÞ ¼ �ða1=a2Þðx� 1=2Þ½a2

2 � ðx� 1=2Þ2��1=2, (40)

where a1 ¼ (a2f)/[a2�(c+c2)1/2] and a2 ¼ 1/2+c.
Using the non-dimensional equations d and di discussed above gives the subtended angle a, the inclination y

and the radius z at any coordinate x. The results are

a ¼ tan�1½di
ð0Þ� � tan�1½di

ð1Þ�; y ¼ tan�1½di
ð0Þ� � tan�1½di

ðxÞ�, (41),(42)

z ¼ ½1þ fdi
ðxÞg2�3=2=dii

ðxÞ. (43)

Using Eqs. (42) and (43) that are functions of the single coordinate x can give the curvature terms z and
z0( ¼ dz/dy) at the inclination y corresponding to x, i.e. at the angular coordinate y, analytically or
numerically. In this study, the numerical method rather than analytical method is chosen. The numerical
method computing the curvature terms of z and z0 in Eqs. (23)–(25) are as follows:
(1)
 Set the beam shape (parabolic or sinusoidal or elliptic), l, h, and c. Recall that the numerical factor c is not
available for the parabolic beam.
(2)
 Form the non-dimensional equation of beam shape, d ¼ d(x), with f( ¼ h/l) and its first derivative
d0 ¼ d0(x). See Eqs. (35)–(40) in accordance with the selected beam shape.
(3)
 Compute a using Eq. (41).

(4)
 Compute Dy ¼ a/(n�1) where n is the number of dividing elements of the beam arc-length from x ¼ 0 to 1,

i.e. from x ¼ 0 to l. See Fig. 3(a).

(5)
 Compute the angular coordinate yj ¼ (j�1)Dy at the jth point where j( ¼ 1,2,3,y,n) is the integer number

originating from the left end (x ¼ 0).

(6)
 Solve the nonlinear equation of Eq. (42), yj ¼ tan�1½di

ð0Þ� � tan�1½di
ðxjÞ�; and then, obtain the unknown

value of xj corresponding to yj. Note that the di(xj) term in Eq. (42) is a function of an unknown variable xj

which can be solved by the proper numerical methods such as Regula–Falsi method [22] adopted herein.
The function of di(xj) is defined in Eq. (36) or Eq. (38) or Eq. (40).
(7)
 Compute derivatives of dj
i and dj

ii using the numerical differentiation method. Herein, the forward fourth-
order polynomials in Taylor-series method [22] is used, or

di
j ¼ ð�25d0 þ 48d1 � 36d2 þ 16d3 � 3d4Þ=ð12DxÞ, (44)

dii
j ¼ ð35d0 � 104d1 þ 114d2 � 56d3 þ 11d4Þ=½12ðDxÞ

2
�, (45)

where d0 ¼ d(xj), d1 ¼ d(x0+Dx),y, d4 ¼ d(x0+3Dx) in which the value Dx ¼ 0.01 is used in this study.
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(8)
 Compute the non-dimensional radius of curvature zj at yj using Eq. (43).

(9)
 After computing all zj at yj with j ¼ 1,2,3,y,n, compute the z0j ¼ (dz/dy)j using the numerical

differentiation method. The result is

z0j ¼ ð�25zj þ 48zjþ1 � 36zjþ2 þ 16zjþ3 � 3zjþ4Þ=ð12DyÞ. (46)
It is noted that in order to obtain the value of z0j ¼ n at the right end (y ¼ a), the additional number of
dividing elements is ‘4’ for applying the forward fourth-order polynomials. See Fig. 3(a).

3.2. Terms of cross-sectional and material properties

Governing equations of Eqs. (23)–(25) are available for the solid- and thin walled-sections, e.g. solid
polygon-, wide flanged-, hollowed-sections, etc. The cross-sectional and material properties related to the
beam parameters of s, sp, e, and u are now discussed.

For a given cross-section with the dimensions, cross-sectional properties including k, A, I, Ip, and J can be
properly defined and for a given material with the mechanical properties, beam parameters of s, sp, e, and u in
Eqs. (15)–(18) are determined. Although the cross-sections mentioned above can be applied to the parametric
studies, the solid rectangular cross-section is selected in the numerical examples of this study. Shown in Fig. 4
is the solid rectangular cross-section with the breadth b and the depth d placed on the horizontal plane (x, y).
In this figure, the 1- and 2-axis are the principal ones of the cross-section, which coincide the radial and
vertical directions, respectively, of the curved beam.

By the definitions for the cross-sectional properties of a rectangular cross-section, the values of k ¼ 0.833,
A ¼ bd, I ¼ I1 ¼ bd3/12, Ip ¼ I1+I2 ¼ (bd3+b3d)/12, and J ¼ ctbd3 with ct ¼ (1/3)(1�0.63d/b) and d/bp1 [23]
are obtained. Substituting all of these values into Eqs. (15)–(18) together with the span length l and the
mechanical properties of G and E gives the beam parameters s, sp, e, and u, or

s ¼ 2
ffiffiffi
3
p

l=d; sp ¼ s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb=dÞ2 þ 1

q
¼ s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:587� 0:3968e=gÞ�2 þ 1

q
, (47),(48)

e ¼ 4ð1� 0:63d=bÞg ¼ 4ð1� 0:63=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=s2p � 1

q
Þg; u ¼ 0:833g, (49),(50)

where g ¼ G/E ¼ 1/[2(1+n)] and n is Poisson’s ratio. For a computing example, if l/d ¼ 28.87, b/d ¼ 3 and
n ¼ 0.3, the corresponding values of s, sp, e, and u are 100, 31.6, 1.22, and 0.32, respectively.

It is now ready to solve the governing equations for calculating the frequency parameter Ci and mode
shapes of deformation Zi, cI, and fi, and those of stress resultants Q�i , M�

i , and T�i , respectively.

3.3. Solution method of governing equations

Based on the above analyses, a general FORTRAN program was written for a given set of beam parameters
consisting of the beam shape, end constraint, rise ratio f, both slenderness ratios s and sp, rigidity ratio e,
 v
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Fig. 4. Coordinates (z, r, v) and solid rectangular cross-section.
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shear parameter u and numerical factor c. Recall that the value of c is not available for the parabolic beams
(see Fig. 3(a)).

The numerical methods presented by Lee and Wilson [21] were used to solve the differential equations.
First, the Runge–Kutta method [22] was used to integrate the differential equations of Eqs. (23)–(25) from
y ¼ 0 to a subject to the boundary conditions from either Eqs. (26)–(28) or Eqs. (29)–(31) according to the
given end constraint. From the results of the Runge–Kutta solutions, the deformations of Z, c, and f
accompanied with their corresponding derivatives Z0, c0, and f0 are obtained. Second, the determinant search
method [21] combined with the Regula–Falsi method [22] was used to determine the eigenvalues Ci of the
governing equations, which satisfy the boundary conditions of either Eqs. (26)–(28) or Eqs. (29)–(31) at
the right end (y ¼ a). Finally, mode shapes of the stress resultants Q�i , M�

i , and T�i are calculated by
Eqs. (32)–(34).
4. Numerical examples and discussion

In numerical examples of this study, three kinds of beam shapes of the parabolic, sinusoidal and elliptic
beams and three kinds of end constraints of the hinged–hinged, hinged–clamped, and clamped–clamped ends
are considered. The beam parameters of f, s, sp, e, u, and c are examined in the parametric studies concerning
calculations of the frequency parameters and mode shapes. In parametric studies of this study, the cross-
section of the beam is only limited in the solid rectangular cross-section (see Section 3.2).

Prior to showing the numerical examples, the convergence analysis for the parabolic beam with
hinged–clamped ends, f ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 1.22, and u ¼ 0.32 was carried out for determining the
suitable step size Dy to be used in the Runge–Kutta scheme. As indicated by results in Table 1, the values of
Ci with a/Dy ¼ 50 are sufficiently close to those with a/Dy ¼ 200. To ensure accuracy of solutions, the value
of a/Dy ¼ 100 is used throughout the parametric studies.

The numerical results, given in Tables 2–4 and Figs. 5–8, are now discussed. Shown in Table 2 is the effect of
beam shapes on frequency parameters Ci. The discrepancies of Ci between three beam shapes with c ¼ 0.1 and
0.5 (except parabolic beams) are relatively little from each other since the deviations of d(x) between three
beam shapes are relatively little. However, it is expected that the discrepancies of Ci become to be large as each
value of c becomes to be largely deviated.

Table 3 shows effects of the rotatory and torsional inertias on Ci, in which ER and ET are the rotatory and
torsional inertia indices, respectively. If the rotatory inertia is excluded, the index ER is 0, and if included, ER is
1. Also, if the torsional inertia is excluded, ET ¼ 0, and if included, ET ¼ 1. When the rotatory and torsional
inertias are excluded, the coefficients of s�2Ci

2z2 in Eq. (24) and sp
�2Ci

2z2 in Eq. (25), which are related to the
rotatory and torsional inertias, respectively, are merely deleted. In Table 3, the beam shape is sinusoidal; the
end constraints are hinged–hinged, hinged–clamped, and clamped–clamped; and the beam parameters are
f ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 1.22, u ¼ 0.32, and c ¼ 0.5. The inclusions of both rotatory and torsional
inertias always result in reduction of the Ci values. It is apparent that if the torsional inertia is excluded
Table 1

Convergence study for parabolic beam with hinged–clamped endsa

a
Dy

Frequency parameter, Ci

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 i ¼ 7

10 10.43 43.07 92.30 109.7 161.1 203.8 252.0

20 11.06 38.87 83.46 109.7 141.4 203.9 215.0

50 11.15 39.08 82.59 109.8 141.4 204.0 213.8

100 11.15 39.10 82.61 109.8 141.4 204.0 213.8

200 11.15 39.10 82.61 109.8 141.4 204.0 213.8

af ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 1.22, and u ¼ 0.32.
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Table 2

Effect of beam shape on frequency parameter, Ci
a

End constraint Beam shape Parameter, c Frequency parameter, Ci

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 i ¼ 7

Hinged–hinged Parabolicb – 6.090 30.40 70.03 109.8 125.0 194.0 203.8

Sinusoidal 0.1 6.443 31.11 70.12 111.5 125.8 195.3 204.8

0.5 6.215 30.65 70.15 110.3 125.4 194.5 203.8

Elliptic 0.1 5.340 28.83 67.74 107.9 121.7 189.3 203.6

0.5 5.905 30.03 69.72 109.1 124.4 193.1 203.7

Hinged–clamped Parabolic – 11.15 39.10 82.61 109.8 141.4 203.8 213.8

Sinusoidal 0.1 11.38 39.61 82.64 111.6 142.2 204.1 215.3

0.5 11.24 39.29 82.71 110.3 141.8 203.8 214.4

Elliptic 0.1 10.69 37.87 80.51 107.9 138.1 203.5 209.1

0.5 11.04 38.82 82.33 109.1 140.7 203.7 212.9

Clamped–clamped Parabolic – 17.12 48.77 96.06 109.9 158.7 203.8 234.7

Sinusoidal 0.1 17.17 49.24 95.70 112.1 159.5 204.1 236.2

0.5 17.14 48.95 96.05 110.6 159.0 203.9 235.3

Elliptic 0.1 17.02 47.83 94.07 108.0 158.0 203.6 229.8

0.5 17.10 48.53 95.87 109.2 158.0 203.7 233.7

af ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 1.22, and u ¼ 0.32.
bIn parabolic beams, the parameter c is not available.

Table 3

Effects of rotatory (ER) and torsional (ET) inertias on frequency parameter, Ci
a

End constraint ER
b ET

c Frequency parameter, Ci

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 i ¼ 7

Hinged–hinged 0 0 6.227 30.77 70.77 126.6 196.9 280.8 377.2

1 0 6.224 30.72 70.52 125.8 195.1 277.3 371.3

0 1 6.217 30.70 70.39 110.3 126.1 196.3 203.8

1 1 6.215 30.65 70.15 110.3 125.4 194.5 203.8

Hinged–clamped 0 0 11.26 39.46 83.49 143.1 217.1 304.5 403.5

1 0 11.26 39.39 83.19 142.2 215.1 300.7 397.9

0 1 11.24 39.35 83.01 110.3 142.6 203.8 216.4

1 1 11.24 39.29 82.71 110.3 141.8 203.8 214.4

Clamped–clamped 0 0 17.19 49.18 97.18 160.6 238.2 329.1 431.6

1 0 17.18 49.09 96.81 159.6 236.0 325.0 425.2

0 1 17.15 49.04 96.40 110.6 160.1 203.8 237.5

1 1 17.14 48.95 96.05 110.6 159.0 203.8 235.3

aSinusoidal beam, f ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 1.22, u ¼ 0.32, and c ¼ 0.5.
bIf ER ¼ 0, all vibration modes are flexible.
cBold lettered figures: torsional modes; not bold lettered figures: flexural modes.
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(ET ¼ 0), the Ci values for the torsional modes cannot be obtained explicitly. Therefore, it is true that if
ET ¼ 0, the Eqs. (23)–(25) are reduced to differential equations governing only the free flexural vibrations of
beam with variable curvature. In Table 3, the torsional frequencies are written as bold lettered figures while the
flexural ones as not bold lettered. As can be seen, if ET ¼ 1, torsional frequencies C4 ¼ 110.3 of hinged–hinged
and hinged–clamped ends, and C4 ¼ 110.6 of clamped–clamped ends are nearly the same but not identical.
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Table 4

Effect of elasticity ratio g( ¼ G/E) on frequency parameter, Ci
a

End constraint Elasticity ratio, g Frequency parameter, Ci

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6 i ¼ 7

Hinged–hinged 0.30 5.769 29.80 69.28 98.68 123.5 181.0 191.2

0.35 5.856 29.95 69.57 105.0 124.1 192.4 194.7

0.40 5.920 30.06 69.79 111.0 124.6 193.3 207.5

0.45 5.980 30.15 69.96 116.6 124.9 194.0 219.6

0.50b 6.025 30.22 70.09 122.0 125.2 194.6 231.0

Hinged–clamped 0.30 10.93 38.58 81.82 98.69 139.7 181.0 210.8

0.35 11.00 38.73 82.15 105.0 140.4 194.7 212.2

0.40 11.05 38.85 82.40 111.0 140.9 207.5 213.2

0.45 11.10 38.94 82.59 116.6 141.3 214.0 219.6

0.50 11.13 39.01 82.74 122.0 141.6 214.6 231.0

Clamped–clamped 0.30 17.01 48.29 95.19 98.82 156.8 181.0 231.3

0.35 17.06 48.45 95.66 105.0 157.6 194.7 232.8

0.40 17.11 48.57 95.95 111.0 158.2 207.5 234.0

0.45 17.14 48.66 96.17 116.6 158.6 219.6 234.9

0.50 17.17 48.74 96.34 122.0 159.0 231.0 235.6

Bold lettered figures are torsional frequencies.
aElliptic beam, f ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 3.16g, u ¼ 0.833g, and c ¼ 0.5.
bPractically not possible but theoretically largest value.
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Also, if ET ¼ 1, C7 ¼ 203.8 of hinged–hinged ends and C6 ¼ 203.8 of hinged–clamped and clamped–clamped
ends are the same. This means that the hinged and clamped ends should play a role similarly in determining
the torsional frequencies. Hereafter, both the rotatory and torsional inertias are included in the parametric
studies to be discussed.

Table 4 shows effects of the elasticity ratio g or shear parameter u( ¼ kg) on the Ci. Here, the beam

parameters are elliptic beam, f ¼ 0.2, s ¼ 100, sp ¼ 31.6, and c ¼ 0.5. Recall that the rigidity ratio e ¼

4ð1� 0:63=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=s2p � 1

q
Þg in Eq. (49) depends on the value of s, sp and g. Therefore, according to the values of

s ¼ 100 and sp ¼ 31.6, the value e becomes to be e ¼ 3.16g. For the rectangular cross-section, the shape factor
k is 0.833 so that u ¼ 0.833g. Meanwhile, value of g for the structural materials approximately ranges from 0.3
to less than 0.5. It is observed that the Ci value increases as the g (or u) value increases. For fictitiously very
large value of g, the effect of shear deformation should be neglected because the shear distortion b in Eq. (4)
approaches zero and consequently, the total rotation of the cross-section v0/r ¼ c+b consists of only the
rotation c due to pure bending. Therefore, the Ci value is clearly overestimated unless the shear deformation is
included. In Table 4, the torsional frequencies are presented as the bold lettered figures for reader’s
convenience. It is true that the effect of g is more pronounced for the torsional frequencies than the flexural
ones. For an example, the ratios of Ci with g ¼ 0.5 to Ci with g ¼ 0.30 are 1.236 ( ¼ 122.0/98.68) of the
torsional mode (i ¼ 4 and bold lettered figure) and 1.014 ( ¼ 125.2/123.5) of the flexural one (i ¼ 5),
respectively, for the hinged–hinged ends.

Shown in Fig. 5 is Ci versus f curves for parabolic beam with (a) hinged–hinged, (b) hinged–clamped, and (c)
clamped–clamped ends. The beam parameters are: s ¼ 100, sp ¼ 31.6, e ¼ 1.22 and u ¼ 0.32. The Ci value
decreases as the value of f increases. In cases of the hinged–hinged and clamped–clamped ends, the mode
shapes are either symmetric or anti-symmetric since geometry of the beam including the end constraint is
symmetric. However, the same is not true for the beam with hinged–clamped ends, because the end constraint
is not symmetric, although the geometry is symmetric. For the hinged–hinged and clamped–clamped ends in
Fig. 5(a) and (c), respectively, the symmetric modes are depicted as ‘S’ and anti-symmetric ones as ‘A,’ As
discussed in Table 3, the vibration modes are either flexural or torsional. Also, in Fig. 5(a), (b) and (c), the
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flexural and torsional modes are depicted as ‘F’ and ‘T,’ respectively. In Fig. 5(a) and (c), two vibration modes
exist at a single frequency parameter where two frequency curves meet at the coordinates (f, Ci) marked by ’.
For an example, the fourth and fifth modes of the hinged–hinged ends in Fig. 5(a) have the same frequencies
C4 ¼ C5 ¼ 109.8 at f ¼ 0.267. As can be seen, for fo0.267, the fourth mode is symmetric and torsional, and
the fifth mode is anti-symmetric and flexural. The two pairs of mode shapes switch at the coordinates of
(0.267, 109.8) marked by ’ so that for f40.267, the fourth mode becomes to be anti-symmetric and flexural,
and the fifth mode becomes to be symmetric and torsional. For the hinged–clamped ends in Fig. 5(b), the
fourth and fifth frequency curves only approach each other but not cross in the range of f sectioned by the
figure of J. Although two curves do not meet, the vibration modes clearly shift before and after this range,
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which is the transition range of the vibration modes. For the clamped–clamped ends in Fig. 5(c), there are two
shifting points marked by ’. It is clear that in these three figures, the diagonal frequency curves are flexural
while the horizontal ones are torsional, and the effect of f on the Ci of torsional vibration is very lesser.

Fig. 6 shows the effect of s on Ci for sinusoidal beam with (a) hinged–hinged, (b) hinged–clamped and (c)
clamped–clamped ends. The beam parameters are: f ¼ 0.2, sp ¼ 0.317s, e ¼ 1.22, u ¼ 0.32, and c ¼ 0.5, in
which the relationship between sp and s with e ¼ 1.22 becomes to be sp ¼ 0.317s. See Eq. (49). It is apparent
that the Ci value increases and approaches an asymptote as the value of s increases. Both terms of u�1s�2Ci

2z2Z
in Eq. (23) and s�2Ci

2z2c in Eq. (24) are originated from the transverse inertia force Fv and rotatory inertia
couple Cc related to the flexural mode so that the diagonal frequency curves which vary deeply with s are the
flexural modes clearly and meanwhile, the horizontal curves which vary very gently with s are the torsional
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ones. It is true that the effect of slenderness s on Ci of the torsional modes is negligible. In addition, the
transition ranges also exist in these frequency curves as already shown in Fig. 5(c). The sixth frequency curve
in Fig. 6(a) is presented in part as the dashed line to show being the coordinates (s, Ci) where the mode shift is
occurred.

Shown in Fig. 7 is the relationship between Ci and sp for the elliptic beam with (a) hinged–hinged, (b)
hinged–clamped, and (c) clamped–clamped ends. The beam parameters are f ¼ 0.2, s ¼ 100, e ¼ 1.54�0.969/
(s2/sp

2
�1)1/2, u ¼ 0.32, and c ¼ 0.5. The frequency curves in the Fig. 7 are presented in the range of spX20

because the minimal value of sp is approximately ‘20’ in order to meet the condition of d/bp1. See Eq. (49).
The Ci value increases and converges to some asymptote as the value of sp increases. The term of sp

�2Ci
2z2f in
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Eq. (25) is originated from the torsional inertia moment Cf in Eq. (25) related to the torsional vibration so
that the diagonal frequency curves are the torsional modes and the horizontal curves are the flexural ones. It is
natural that the effect of slenderness sp on Ci of the flexural vibrations is negligible. Also, the transition ranges
exist in these frequency curves as already shown in Figs. 5(c) and 6. The sixth frequency curve in Fig. 7(c) is
presented in part as the dashed line to show being the coordinates (sp, Ci) where the mode shift is occurred.

Fig. 8 shows the typical examples of mode shapes of deformations of Zi, ci, and fi, and stress resultants of,
Q�i , M�

i and T�i for the parabolic beams with (a) hinged–hinged, (b) hinged–clamped and (c) clamped–clamped
ends. The beam parameters are f ¼ 0.2, s ¼ 100, sp ¼ 31.6, e ¼ 1.22, and u ¼ 0.32. The mode shapes with their
corresponding frequencies in these figures can be classified as follows:
(a)
 Parabolic beam with hinged–hinged ends:
� First mode: symmetric and flexural (C1 ¼ 6.090).
� Second mode: anti-symmetric and flexural (C2 ¼ 30.40).
� Third mode: symmetric and flexural (C3 ¼ 70.03).
� Fourth mode: symmetric and torsional (C4 ¼ 109.8).
� Fifth mode: anti-symmetric and flexural (C5 ¼ 125.0).
(b)
 Parabolic beam with hinged–clamped ends (neither symmetric nor anti-symmetric):
� First mode: flexural (C1 ¼ 11.15).
� Second mode: flexural (C2 ¼ 39.10).
� Third mode: flexural (C3 ¼ 82.61).
� Fourth mode: torsional (C4 ¼ 109.8).
� Fifth mode: flexural (C5 ¼ 141.4).
(c)
 Parabolic beam with clamped–clamped ends:
� First mode: symmetric and flexural (C1 ¼ 17.12).
� Second mode: anti-symmetric and flexural (C2 ¼ 48.77).
� Third mode: symmetric and flexural (C3 ¼ 96.06).
� Fourth mode: symmetric and torsional (C4 ¼ 109.9).
� Fifth mode: anti-symmetric and flexural (C5 ¼ 158.7).
It is seen that the fourth torsional mode shapes of hinged–hinged ends in Fig. 8(a), hinged–clamped ends in
Fig. 8(b) and clamped–clamped ends in Fig. 8(c) quite differ with each other, especially those of rotation c,
even though the three torsional frequencies are nearly identical, namely C4 ¼ 109.8, 109.8, and 109.9. From
the mode shapes depicted in Fig. 8, the positions of maximum amplitudes and interior nodal points for both
deformations and stress resultants can be observed, which can serve as useful reference for the design of curved
beams especially when the dynamic loads are subjected.

Since the mode shapes of deformations v,c, and f are either symmetric or anti-symmetric for cases of the
hinged–hinged and clamped–clamped ends, the boundary conditions at the mid-arc (y ¼ a/2) are obtained
from results of the mode shapes shown in Fig. 8(a) and (c), or
�
 Symmetric mode:

Z0 ¼ 0; c ¼ 0; f0 ¼ 0. (51)2(53)
�
 Anti-symmetric mode:

Z ¼ 0; c0 ¼ 0; f ¼ 0. (54)2(56)
The frequency parameters Ci can be obtained by using the boundary conditions at the mid-arc (y ¼ a/2) of
Eqs. (51)–(53) and Eqs. (54)–(56) rather than the boundary conditions of Eqs. (26)–(31) at the right end
(y ¼ a) already discussed in Chapter 2. It is fact that both results of the values of Ci are the same each other
(not shown herein).
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5. Experimental methods and measured results

Laboratory-scale aluminum, parabolic curved beams were designed and tested for a hinged–hinged, a
hinged–clamped, and a clamped–clamped end constraint. These curved beams all had the same geometry:
l ¼ 0.346m, h ¼ 0.104m and solid rectangular cross-section with b ¼ 0.03m and d ¼ 0.006m. And the
material properties of aluminum are mass density g ¼ 2680 kg/m3, shear modulus of elasticity
G ¼ 2.60� 1010N/m2 and Young’s modulus E ¼ 6.89� 1010N/m2. The cross-sectional properties of the
specimen beams are now calculated: A ¼ 1.8� 10�4m2, I ¼ 5.4� 10�10m4, Ip ¼ 1.404� 10�8m4, and
J ¼ 1.888� 10�9m4. Recall that k ¼ 0.833 for the solid rectangular cross-section. Therefore, the correspond-
ing non-dimensional beam parameters are: f ¼ 0.3 (a ¼ 1.752 rad.), s ¼ 200, sp ¼ 39.2, e ¼ 1.319, u ¼ 0.314
with which the frequency parameters Ci for each of the three end constraints were calculated by the theory
developed herein. With these values of Ci, the corresponding frequencies oi were calculated from Eq. (13). The
predicted natural frequencies for experimental beams are thus Fi ¼ oi/(2p) ¼ 73.36Ci/(2p) ¼ 11.68CiHz.

Fig. 9 shows (a) a side view of the experimental setup, and (b) the modal analysis system used to measure Ci

for the curved beams in out-of-plane free vibration. The end of a model beam was either fastened to a steel
hinge or clamped between the steel blocks, both of which were anchored with bolts to a 5 cm thick acryl slab
glued rubber pad of medium stiffness. This experimental design provided low heave and rotational frequencies
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flexural and torsional modes.
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for each granite block, and offered vibration isolation at the ends. This design minimized the effect
of vibration on the end supports so that the experimental frequencies of the beam itself could be identified
easily [12,21].

In the experiments, 13 reference points were evenly spaced along the top of each beam. As shown in
Fig. 9(a), a miniature piezoelectric accelerometer, A, was affixed to the underside of the beam at the reference
point nearest to one end. In a typical experiment, each reference point was struck vertically at the top of the
beam with an impact hammer, which was fitted with a miniature accelerometer, B. For each test, a record of
the time history of the out-of-plane response for both accelerometers A and B was obtained. All data were
received by a Signal Analyzer (Model SD390, Scientific-Atlanta Corporation) and processed through a
minicomputer using a fast Fourier transform analyzer as shown in Fig. 9(b). For data collected for a hammer
blow at the location of accelerometer A, the software was used to calculate the frequency spectrum. The peaks
of this spectrum occur at the free vibration frequencies of the beam. The reader should be referred to the work
of Ewins [24] for more details on the methods of data processing.

Note that for measuring only the flexural vibration, the accelerometer A was affixed to the breadth’s mid-
point of the bottom surface of the beam and the reference points which were marked along the center line at
the top surface of the beam were struck by the hammer with an accelerometer B, while for measuring both the
flexural and torsional vibrations simultaneously, the accelerometer A was affixed to an inner point from the
breadth’s mid-point and the hammer strikes were done along the reference points marked along the outer side
from the center line of the beam. See Fig. 9(c) and (d). From two separate experiments, the measured
frequencies can easily be classified into the flexural or torsional modes [12].
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The frequency spectrums for each of the three beams that were tested are presented in Fig. 10(a)–(c) for the
case where both the flexural and torsional modes were simultaneously measured. The software gave a listing of
the seven lowest frequencies corresponding to the seven first peaks of each spectrum. These results, which were
reproduced to within about 2% in repeated tests, are the experimental frequencies listed in Table 5 where the
predicted frequencies calculated in this study are also presented. In addition, natural frequencies obtained
by the finite element program ADINA for the three experimental beams are listed in Table 5 for the
comparison purpose.
Table 5

Comparison of natural frequencies, Fi (Hz) between this study, ADINA and experiment for parabolic beams

End constraint i This study ADINA Experiment Deviation (%)a

Ci Fi (Hz) Fi (Hz) Fi (Hz)

Hinged–hinged 1 3.971 46.38 46.23 55.95 17.1

2 24.40 284.9 284.1 269.6 5.7

3 57.09 666.8 664.9 589.3 13.2

4 104.4 1219. 1216. 1099. 10.9

5 139.8b 1633. 1626. 1597. 2.3

6 164.7 1923. 1917. 1943. 1.0

7 236.7 2764. 2748. 2953. 6.4

Hinged–clamped 1 8.444 98.63 98.33 119.2 17.3

2 31.51 368.1 367.0 376.4 2.2

3 67.72 790.9 788.7 778.2 1.6

4 118.3 1381. 1378. 1312. 5.3

5 139.8b 1633. 1626. 1695. 3.7

6 181.9 2124. 2122. 1907. 11.5

7 241.9 2825. 2814. 2792. 1.2

Clamped–clamped 1 13.37 156.1 155.7 142.4 9.6

2 39.55 461.9 460.6 417.1 10.7

3 79.09 923.8 921.1 849.4 8.8

4 133.1 1554. 1550. 1409. 10.3

5 139.8 1633 1626. 1582. 3.2

6 200.0 2335. 2327. 2121. 10.1

7 242.4 2831. 2816. 2741. 3.3

aDeviation (%) ¼ |1–this study/experiment|� 100.
bBold lettered figures are torsional frequencies.
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This table shows two results of this study and ADINA are nearly identical. This validates the mathematical
model and numerical method developed herein. Also, this table shows excellent agreements between the two
results obtained from this study and experiment. For the three beams, the percentage deviations between this
study and experiment in the results average about 7.4%. It is noted that high peaks in Fig. 10(a)–(c) exist for
all three transfer functions near the zero frequency. It is undoubtedly due to the rocking responses of the 30 kg
granite blocks, which rested on the rubber pads at the ends of the beam. This assemble has relatively low
natural frequencies of about 2Hz.

For reader’s convenience, the frequency spectrum for the clamped–clamped beam that was tested is pre-
sented in Fig. 11 for the case where the flexural vibration was only measured. Comparing two figures
(Figs. 10(c) and 11), it is clear that two natural frequencies of F5 ¼ 1582 and F7 ¼ 2741, marked by ‘T,’ in
Fig. 10(c) are the torsional frequencies, whose peaks are not appeared in Fig. 11.

6. Concluding remarks

The differential equations governing the free, out-of-plane vibrations of horizontally curved beams with
variable curvature are derived in which the effects of rotatory and torsional inertias and shear deformation are
included. The differential equations are solved numerically to calculate the frequency parameters accompanied
with the mode shapes. In the numerical examples, the parabolic, sinusoidal and elliptic beams with
hinged–hinged, hinged–clamped, and clamped–clamped end constraints are considered. The inclusions of
rotatory and torsional inertias always result in reduction of the frequency parameters. If the torsional inertia is
excluded, the frequency parameters of torsional modes cannot be obtained. The frequency parameter Ci

increases as the value of the shear parameter u (or elasticity ratio g) increases. The Ci values are overestimated
if the shear deformation is excluded. The effects of beam parameters on the frequency parameters are
intensively investigated: the Ci value decreases as the rise ratio f increases, and it increases as the slenderness
ratios s and sp increase. Typical mode shapes of the stress resultants as well as deformations are presented. The
natural frequencies obtained by experiments agree closely with those obtained by theories developed herein.

Both mathematical and numerical methods presented herein are robust and reliable in calculating the
natural frequencies accompanying with the mode shapes for curved beams with variable curvature, which can
be extensively utilized in designing the curved beams.
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